
 Department of CSE Page 1 of 17

UNIT - IV

Project Organizations and Responsibilities: Line-of-Business Organizations, Project

Organizations, evolution of Organizations.

 Process Automation: Automation Building blocks, The Project Environment.

Project Organizations and Responsibilities:

 Organizations engaged in software Line-of-Business need to support projects with
the infrastructure necessary to use a common process.

 Project organizations need to allocate artifacts & responsibilities across project team to
ensure a balance of global (architecture) & local (component) concerns.

 The organization must evolve with the WBS & Life cycle concerns.
 Software lines of business & product teams have different motivation.
 Software lines of business are motivated by return of investment (ROI), new business

discriminators, market diversification & profitability.
 Project teams are motivated by the cost, Schedule & quality of specific deliverables

1) Line-Of-Business Organizations:
The main features of default organization are as follows:

• Responsibility for process definition & maintenance is specific to a cohesive line of business.
• Responsibility for process automation is an organizational role & is equal in

importance to the process definition role.
• Organizational role may be fulfilled by a single individual or several different teams.

Fig: Default roles in a software Line-of-Business

Organization.

 Department of CSE Page 2 of 17

Software Engineering Process Authority (SEPA)

The SEPA facilities the exchange of information & process guidance both to & from
project practitioners

This role is accountable to General Manager for maintaining a current assessment of
the organization’s process maturity & its plan for future improvement

Project Review Authority (PRA)
The PRA is the single individual responsible for ensuring that a software project

complies with all organizational & business unit software policies, practices & standards

A software Project Manager is responsible for meeting the requirements of a contract or
some other project compliance standard

Software Engineering Environment Authority(SEEA)
The SEEA is responsible for automating the organization’s process, maintaining the
organization’s standard environment, Training projects to use the environment &
maintaining organization-wide reusable assets

The SEEA role is necessary to achieve a significant ROI for common process.

Infrastructure
An organization’s infrastructure provides human resources support, project-

independent research & development, & other capital software engineering assets.

2) Project organizations:

• The above figure shows a default project organization and maps project-level
roles and responsibilities.

• The main features of the default organization are as follows:
• The project management team is an active participant, responsible for producing as

well as managing.

 Software Management

Artifacts Activities

 Business case

 Software development plan

 Status assessments

Customer interface, PRA interface

Planning, monitoring

Risk management

Software process definition

Process improvement

System engineering Administration

Software Architecture Software Development Software Assessment

Figure 11-2. Default project organization and responsibilities

 Department of CSE Page 3 of 17

• The architecture team is responsible for real artifacts and for the integration of
components, not just for staff functions.

• The development team owns the component construction and maintenance activities.
• The assessment team is separate from development.
• Quality is everyone’s into all activities and checkpoints.
• Each team takes responsibility for a different quality perspective.

3) EVOLUTION OF ORGANIZATIONS:

Inception:
Software management: 50%
Software Architecture:20%
Software development: 20%
Software Assessment
(measurement/evaluation):10%

Elaboration:
Software management: 10%
Software Architecture:50%
Software development: 20%
Software Assessment
(measurement/evaluation):20%

Construction:
Software management: 10%
Software Architecture:10%
Software development: 50%
Software Assessment
(measurement/evaluation):30%

Transition:
Software management: 10%
Software Architecture: 5%
Software development: 35%
Software Assessment
(measurement/evaluation):50%

Inception Elaboration

Transition Construction

Software
Assessmen

t 30%

Software
Architecture

10%

Software
Management

10%

Software

Developmen
t 35%

Software

Architecture
5%

Software
Management

10%

Software
Assessmen

t 20%

Software
Developmen

t 20%

Software
Management

10%

Software
Assessmen

t 10%

Software
Developmen

t 20%

Software
Architecture

20%

Software
Developmen

t 50%

Software

Assessmen

t 50%

Software
Architecture

50%

Software
Management

50%

 Department of CSE Page 4 of 17

Introductory

Remarks:

The Process Automation:

The environment must be the first-class artifact of the process.

Process automation & change management is critical to an iterative process. If the change is

expensive then the development organization will resist it.

Round-trip engineering & integrated environments promote change freedom &

effective evolution of technical artifacts.

Metric automation is crucial to effective project control.

External stakeholders need access to environment resources to improve interaction with the

development team & add value to the process.

The three levels of process which requires a certain degree of process automation for the

corresponding process to be carried out efficiently.

Metaprocess (Line of business): The automation support for this level is called an

infrastructure. Macroproces (project): The automation support for a project’s

process is called an environment. Microprocess (iteration): The automation support

for generating artifacts is generally called a tool.

Tools: Automation Building blocks:

Many tools are available to automate the software development process. Most of the

core software development tools map closely to one of the process workflows

Workflows Environment Tools & process Automation

Management Workflow automation, Metrics

automation

Environment Change Management, Document

Automation

Requirements Requirement Management

Design Visual Modeling

Implementation -Editors, Compilers, Debugger, Linker,

Runtime Assessment -Test automation, defect

Tracking

Deployment defect Tracking

 Department of CSE Page 5 of 17

The Project Environment:
The project environment artifacts evolve through three discrete states.
(1) Prototyping Environment. (2) Development Environment. (3) Maintenance Environment.

The Prototype Environment includes an architecture test bed for prototyping project

architecture to evaluate trade-offs during inception & elaboration phase of the life cycle.

The Development environment should include a full suite of development tools needed to

support various Process workflows & round-trip engineering to the maximum extent

possible.

The Maintenance Environment should typically coincide with the mature version of the

development. There are four important environment disciplines that are critical to

management context & the success of a modern iterative development process.

Round-Trip engineering

Change Management

Software Change Orders

(SCO)

Configuration baseline Configuration Control Board

Infrastructure

Organization Policy

Organization

Environment

Stakeholder

Environment.

Round Trip Environment
Tools must be integrated to maintain consistency & traceability.
Round-Trip engineering is the term used to describe this key requirement for environment that

support iterative development.

As the software industry moves into maintaining different information sets for the

engineering artifacts, more automation support is needed to ensure efficient & error free

transition of data from one artifacts to another. Round-trip engineering is the environment

support necessary to maintain Consistency among the engineering artifacts.

 Department of CSE Page 6 of 17

 Department of CSE Page 7 of 17

Change Management

Change management must be automated & enforced to manage multiple iterations & to enable

change freedom. Change is the fundamental primitive of iterative Development.

I. Software Change Orders

The atomic unit of software work that is authorized to create, modify or obsolesce

components within a configuration baseline is called a software change orders (SCO)

The basic fields of the SCO are Title, description, metrics, resolution, assessment & disposition

Change management

II. Configuration Baseline

A configuration baseline is a named collection of software components &Supporting

documentation that is subjected to change management & is upgraded, maintained, tested,

statuses & obsolesced a unit There are generally two classes of baselines

External Product

Release Internal testing

Release
Three levels of baseline releases are required for most Systems

 Department of CSE Page 8 of 17

1. Major release (N)
2. Minor Release (M)
3. Interim (temporary) Release (X)

Major release represents a new generation of the product or project

A minor release represents the same basic product but with enhanced features, performance

or quality. Major & Minor releases are intended to be external product releases that are

persistent & supported for a period of time.

An interim release corresponds to a developmental configuration that is intended to be

transient. Once software is placed in a controlled baseline all changes are tracked such that a

distinction must be made for the cause of the change. Change categories are

Type 0: Critical Failures (must be fixed before release)

Type 1: A bug or defect either does not impair (Harm) the usefulness of the system or can be

worked around

Type 2: A change that is an enhancement rather than a response to

a defect Type 3: A change that is necessitated by the update to the

environment Type 4: Changes that are not accommodated by the

other categories.

Change Management
III Configuration Control Board (CCB)

A CCB is a team of people that functions as the

decision Authority on the content of configuration

baselines

A CCB includes:

1. Software managers
2. Software Architecture managers
3. Software Development managers

4. Software Assessment managers

5. Other Stakeholders who are integral to the maintenance of the controlled software

delivery system?
Infrastructure

The organization infrastructure provides the organization’s capital assets including

two key artifacts - Policy & Environment

I Organization Policy:
A Policy captures the standards for project software development processes

The organization policy is usually packaged as a handbook that defines the life cycles & the

process primitives such as

 Major milestones
 Intermediate Artifacts
 Engineering repositories
 Metrics

 Roles & Responsibilities

 Department of CSE Page 9 of 17

Infrastructure
II Organization Environment

The Environment that captures an inventory of tools which are building blocks from which project

environments can be configured efficiently & economically

Stakeholder Environment

Many large scale projects include people in external organizations that represent other

stakeholders participating in the development process they might include

 Procurement agency contract monitors
 End-user engineering support personnel
 Third party maintenance contractors
 Independent verification & validation contractors
 Representatives of regulatory agencies & others.

These stakeholder representatives also need to access to development resources so that they

can contribute value to overall effort. These stakeholders will be access through on-line

An on-line environment accessible by the external stakeholders allow them to participate in

the process a follows

Accept & use executable increments for the hands-on evaluation.

Use the same on-line tools, data & reports that the development organization uses to

manage & monitor the project

Avoid excessive travel, paper interchange delays, format translations, paper * shipping costs

& other overhead cost

 Department of CSE Page 10 of 17

PROJECT CONTROL & PROCESS INSTRUMENTATION

INTERODUCTION: Software metrics are used to implement the activities and

products of the software development process. Hence, the quality of the software

products and the achievements in the development process can be determined using

the software metrics.

Need for Software Metrics:

 Software metrics are needed for calculating the cost and schedule of a software product with

 great accuracy.

 Software metrics are required for making an accurate estimation of the progress.

 The metrics are also required for understanding the quality of the software product.

INDICATORS:

An indicator is a metric or a group of metrics that provides an understanding of

the software process or software product or a software project. A software

engineer assembles measures and produce metrics from which the indicators can

be derived.

Two types of indicators are:

(i) Management indicators.

(ii) Quality indicators.

 Department of CSE Page 11 of 17

Management Indicators

The management indicators i.e., technical progress, financial status and staffing progress are

used to determine whether a project is on budget and on schedule. The management

indicators that indicate financial status are based on earned value system.
Quality Indicators
The quality indicators are based on the measurement of the changes occurred in software.

SEVEN CORE METRICS OF SOFTWARE PROJECT
Software metrics instrument the activities and products of the software
development/integration process. Metrics values provide an important perspective for

managing the process. The most useful metrics are extracted directly from the

evolving artifacts.

There are seven core metrics that are used in managing a modern process.

Seven core metrics related to project control:

Management Indicators Quality Indicators

Work and Progress Change traffic and

stability Budgeted cost and expenditures Breakage and

modularity Staffing and team dynamics Rework and

adaptability

Mean time between failures (MTBF) and maturity
MANAGEMENT INDICATORS:

Work and progress

This metric measure the work performed over time. Work is the effort to be

accomplished to complete a certain set of tasks. The various activities of an

iterative development project can be measured by defining a planned estimate of

the work in an objective measure, then tracking progress (work completed

overtime) against that plan.
The default perspectives of this metric are:

Software architecture team: - Use cases demonstrated.

Software development team: - SLOC under baseline change management,

SCOs closed Software assessment team: - SCOs opened, test hours executed

and evaluation criteria meet. Software management team: - milestones

completed.

The below figure shows expected progress for a typical project with three major releases

Fig: work and progress

 Department of CSE Page 12 of 17

Budgeted cost and expenditures

This metric measures cost incurred over time. Budgeted cost is the planned expenditure profile

over the life cycle of the project. To maintain management control, measuring cost expenditures

over the project life cycle is always necessary. Tracking financial progress takes on an

organization - specific format. Financial performance can be measured by the use of an earned

value system, which provides highly detailed cost and schedule insight. The basic parameters of

an earned value system, expressed in units of dollars, are as follows:

Expenditure Plan - It is the planned spending profile for a project over its planned schedule.

Actual progress - It is the technical accomplishment relative to the planned progress underlying

the spending profile.

Actual cost: It is the actual spending profile for a project over its actual

schedule. Earned value: It is the value that represents the planned cost

of the actual progress. Cost variance: It is the difference between the

actual cost and the earned value.

Schedule variance: It is the difference between the planned cost and the earned value. Of all

parameters in an earned value system, actual progress is the most subjective

Assessment: Because most managers know exactly how much cost they have incurred and how

much schedule they have used, the variability in making accurate assessments is centred in the

actual progress assessment. The default perspectives of this metric are cost per month, full-time

staff per month and percentage of budget expended.
Staffing and team dynamics

This metric measures the personnel changes over time, which involves staffing additions and

reductions over time. An iterative development should start with a small team until the risks in

the requirements and architecture have been suitably resolved. Depending on the overlap of

iterations and other project specific circumstances, staffing can vary. Increase in staff can slow

overall project progress as new people consume the productive team of existing people in

coming up to speed. Low attrition of good people is a sign of success. The default perspectives

of this metric are people per month added and people per month leaving. These three

management indicators are responsible for technical progress, financial status and staffing

progress.

Fig: staffing and Team dynamics

 Department of CSE Page 13 of 17

QUALITY INDICATORS:
Change traffic and stability:

This metric measures the change traffic over time. The number of software change orders

opened and closed over the life cycle is called change traffic. Stability specifies the relationship

between opened versus closed software change orders. This metric can be collected by change

type, by release, across all releases, by term, by components, by subsystems, etc.

The below figure shows stability expectation over a healthy project’s life cycle

Fig: Change traffic and stability

Breakage and modularity

This metric measures the average breakage per change over time. Breakage is defined as the

average extent of change, which is the amount of software baseline that needs rework and

measured in source lines of code, function points, components, subsystems, files or other units.

Modularity is the average breakage trend over time. This metric can be collected by revoke

SLOC per change, by change type, by release, by components and by subsystems.

Rework and adaptability:

This metric measures the average rework per change over time. Rework is defined as the

average cost of change which is the effort to analyse, resolve and retest all changes to software

baselines. Adaptability is defined as the rework trend over time. This metric provides insight

into rework measurement. All changes are not created equal. Some changes can be made in a

staff- hour, while others take staff-weeks. This metric can be collected by average hours per

change, by change type, by release, by components and by subsystems.

MTBF and Maturity:

This metric measures defect rather over time. MTBF (Mean Time Between Failures) is the

average usage time between software faults. It is computed by dividing the test hours by the

number of type 0 and type 1 SCOs. Maturity is defined as the MTBF trend over time. Software

errors can be categorized into two types deterministic and nondeterministic. Deterministic

errors are also known as Bohr-bugs and nondeterministic errors are also called as Heisen-bugs.

Bohr-bugs are a class of errors caused when the software is stimulated in a certain way such as

coding errors. Heisen-bugs are software faults that are coincidental with a certain probabilistic

occurrence of a given situation, such as design errors. This metric can be collected by failure

counts, test hours until failure, by release, by components and by subsystems. These four quality

indicators are based primarily on the measurement of software change across evolving baselines

of engineering data.

 Department of CSE Page 14 of 17

LIFE -CYCLE EXPECTATIONS:

There is no mathematical or formal derivation for using seven core metrics properly.

However, there were specific reasons for selecting them:

The quality indicators are derived from the evolving product rather than the artifacts.

They provide inside into the waste generated by the process. Scrap and rework metrics

are a standard measurement perspective of most manufacturing processes.

They recognize the inherently dynamic nature of an iterative development process.

Rather than focus on the value, they explicitly concentrate on the trends or changes with

respect to time.

The combination of insight from the current and the current trend provides tangible

indicators for management action.
Table 13-3. the default pattern of life cycle evolution

Metric

Inceptio

n

Elaborati

on

Constructi

on

Transiti

on

Progress

5%

25%

90%

100%

Architectur

e

30%

90%

100%

100%

Application

s

<5%

20%

85%

100%

Expenditure

s

Low

Moderate

High

High

Effort

5%

25%

90%

100%

Schedule

10%

40%

90%

100%

Staffing

Small
team

Ramp up

Steady

Varying

Stability

Volatile

Moderate

Moderate

Stable

Architectur

e

Volatile

Moderate

Stable

Stable

Application

s

Volatile

Volatile

Moderate

Stable

 Department of CSE Page 15 of 17

Modularity

50%-
100%

25%-50%

<25%

5%-10%

Architectur

e

>50%

>50%

<15%

<5%

Application

s

>80%

>80%

<25%

<10%

Adaptabili

ty

Varying

Varying

Benign.

Benign

Architectu

re

Varying

Moderate

Benign

Benign

Applicatio

ns

Varying

Varying

Moderate

Benign

Maturity

Prototype

Fragile

Usable

Robust

Architectu

re

Prototype

Usable

Robust

Robust

Applicatio

ns

Prototype

Fragile

Usable

Robust

METRICS AUTOMATION:

Many opportunities are available to automate the project control activities of a

software project. A Software Project Control Panel (SPCP) is essential for

managing against a plan. This panel integrates data from multiple sources to

show the current status of some aspect of the project. The panel can support

standard features and provide extensive capability for detailed situation analysis.

SPCP is one example of metrics automation approach that collects, organizes

and reports values and trends extracted directly from the evolving engineering

artifacts.

SPCP:
To implement a complete SPCP, the following are necessary.

 Metrics primitives - trends, comparisons and progressions

 A graphical user interface.

 Metrics collection agents

 Metrics data management server

 Metrics definitions - actual metrics presentations for requirements progress,

 Department of CSE Page 16 of 17

implementation progress, assessment progress, design progress and other progress

dimensions.

 Actors - monitor and administrator.

Monitor defines panel layouts, graphical objects and linkages to project data. Specific

monitors called roles include software project managers, software development team

leads, software architects and customers. Administrator installs the system, defines new

mechanisms, graphical objects and linkages. The whole display is called a panel. Within

a panel are graphical objects, which are types of layouts such as dials and bar charts for

information. Each graphical object displays a metric. A panel contains a number of

graphical objects positioned in a particular geometric layout. A metric shown in a

graphical object is labelled with the metric type, summary level and insurance name

(line of code, subsystem, server1). Metrics can be displayed in two modes – value,

referring to a given point in time and graph referring to multiple and consecutive points

in time. Metrics can be displayed with or without control values. A control value is an

existing expectation either absolute or relative that is used for comparison with a

dynamically changing metric. Thresholds are examples of control values. The basic

fundamental metrics classes are trend, comparison and progress.

The format and content of any project panel are configurable to the software

project manager's preference for tracking metrics of top-level interest. The

basic operation of an SPCP can be described by the following top - level use

case.

 Department of CSE Page 17 of 17

i. Start the SPCP

ii. Select a panel preference

iii. Select a value or graph metric

iv. Select to superimpose controls

v. Drill down to trend

vi. Drill down to point in time.

vii. Drill down to lower levels of information

viii. Drill down to lower level of indicators.

 IMP Questions

1. Define metric. Discuss seven core metrics for project control

and process instrumentation with suitable examples?

2. List out the three management indicators that can be used

as core metrics on software projects. Briefly specify

meaning of each?

3. Explain the various characteristics of good software metric.

Discuss the metrics Automation using appropriate example?
4. Explain about the quality indicators that can be used as core metrics on software

projects.
5. Explain Management Indicators with suitable example?

6. Define MTBF and Maturity. How these are related to each other?

7. Briefly explain about Quality Indicators?

8. Write short notes on Pragmatic software metrics?

	 Software lines of business & product teams have different motivation.
	Project Review Authority (PRA)
	Software Engineering Environment Authority(SEEA)
	Infrastructure
	The Process Automation:
	Tools: Automation Building blocks:
	Workflows Environment Tools & process Automation Management Workflow automation, Metrics automation
	Requirements Requirement Management
	Implementation -Editors, Compilers, Debugger, Linker, Runtime Assessment -Test automation, defect Tracking

	The Project Environment:
	Round Trip Environment
	Change Management
	I. Software Change Orders
	External Product Release Internal testing Release
	Change Management (1)
	1. Software managers
	3. Software Development managers
	5. Other Stakeholders who are integral to the maintenance of the controlled software delivery system?
	I Organization Policy:
	Infrastructure
	Stakeholder Environment
	Need for Software Metrics:
	Management Indicators
	Quality Indicators
	SEVEN CORE METRICS OF SOFTWARE PROJECT
	Seven core metrics related to project control:
	MANAGEMENT INDICATORS:
	The default perspectives of this metric are:
	The below figure shows expected progress for a typical project with three major releases

	Budgeted cost and expenditures
	Staffing and team dynamics
	QUALITY INDICATORS:
	The below figure shows stability expectation over a healthy project’s life cycle

	Breakage and modularity
	Rework and adaptability:
	LIFE -CYCLE EXPECTATIONS:
	METRICS AUTOMATION:
	SPCP:
	IMP Questions

